
Remark: These algorithms will work well even if a small portion of the vertices has degreehigher than a parameter � because they can colour themselves after the bulk of the graphhas coloured itself. This might lead to very e�cient algorithms when the network has onlyfew high degree nodes.AcknowledgementAll authors gratefully acknowledge the hospitality of BRICS, �Arhus, Denmark, where thisresearch was performed. We also thank Riccardo Silvestri and Aravind Srinivasan for usefulconversations.References[1] B. Awerbuch, A.V. Goldberg, M. Luby, and S.A. Plotkin, Network decomposition andlocality in distributed computation. In 30th Annual Symposium on Foundations of Com-puter Science, pages 364-369, November 1989. IEEE[2] R Jain, J Werth, J.C. Browne, and G Sasaki, A graph-theoretic model for the schedulingproblem and its application to simultaneous resource scheduling, in Computer Scienceand Operations Research: New Developments in Their Interfaces, Ed. by O.Balci, R. Shander, and S. Zerrick, Penguin Press, 1992.[3] R Jain, K. Somalwar, J Werth and J.C. Browne, Scheduling Parallel I/O Operations inMultiple Bus Systems, Journal of Parallel and Distributed Computing, 16(4), pp. 352-362,1992.[4] R Jain and J Werth Analysis of Approximate Algorithms for Constrained and Uncon-strained Edge Coloring of Bipartite Graphs, DIMACS Technical Report, 95-01 January,1995, Appeared in Information Processing Letters,[5] A. Goldberg and S.A. Plotkin, Parallel (�+1)-coloring of constant-degree graphs. Inform.Process. Lett., 25 (1987), no. 4, 241{245.[6] A. Goldberg, S. Plotkin and G.E. Shannon, Parallel symmetry breaking in sparse graphsSIAM J. Disc. Math. Vol. 1, No. 4, pp. 434-446, November 1988[7] A. Goldberg, M. Luby, S. Plotkin and G.E. Shannon, Parallel symmetry breaking insparse graphs SIAM J. Disc. Math. Vol. 1, No. 4, pp. 434-446, November 1988[8] M. Hanckowiak, M. Karonski and A. Panconesi, A faster distributed algorithm for com-puting maximal matchings deterministically, in Proceedings of PODC 99, the EighteenthAnnual ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing.[9] N. Linial, Locality in distributed graph algorithms, SIAM J. Comput., Vol. 21, No. 1,pp. 193-201, February 1992[10] N. Linial and M. Saks, Low diameter graph decompositions, Combinatorica (1993), Vol.13 (4) 7

4 Vertex Colourings and Maximal Independent SetsIn this section we show how to �nd a proper (� + 1)-colouring of the nodes of G withinO(log� n+�2) deterministic rounds. As a consequence, we will obtain a deterministic proto-col to �nd a maximal independent set of G within the same bound. Note that the complementof a maximal independent set is a minimal node cover and also a minimal dominating set.Therefore, our algorithm applies to these problems as well.The vertex colouring algorithm is based on the following two ideas. The �rst idea isthat if G is k-vertex coloured, where perhaps k is much larger than �, the maximum degreeof G, the k-colouring can be shrunk to a (� + 1)-vertex colouring simply as follows: Foreach i = � + 2;� + 3; : : : ; k, all vertices with colour i, in parallel, recoulor by picking anyavailable colour in the set f1; : : : ;� + 1g. This is correct since each colour class of theoriginal k-colouring is an independent set and therefore all recolouring choices are mutuallycompatible. The number of rounds needed is k���1. We shall refer to this as the shrinkingprocedure.The second idea is that the problem of (�+1)-vertex colouring G can be reduced to thatof 3-vertex colouring each forest of a forest decomposition of G, as follows. Let F1; : : : ; F�be the forest decomposition, and let A := [̀i=1E(Fi)be the edge set of the �rst ` forests. Suppose, by induction, that G[A], the subgraph inducedby the edge set A, is (�+1)-vertex coloured already, and that F`+1 is 3-vertex coloured. Let� and c, respectively, be the two colourings of G[A] and F`+1. Then, (�; c) is a (3� + 3)-colouring of G[A[F`+1] which can be shrunk to a (�+1)-colouring in 2�+2 rounds by theshrinking procedure. Here is the resulting Algorithm 4.Algorithm 4 Color1. Compute a forest decomposition F1; : : : ; F� of the input graph G and a3-vertex colouring ci for each Fi;2. for i = 1; : : : ;� do finclude Fi one at a timeg3. for k := 1 to � + 1 do fshrink (�; c) to a (� + 1) colouring g4. for c := 2 to 3 do5. all vertices u such that �(u) = k and ci(u) = c set �(u) to an arbitrarycolour in the set f1; : : : ;�+ 1g and not assigned to any neighborv of u with ci(v) < c.To obtain a maximal independent set we only need to consider a minor modi�cationof Algorithm 4. In step 5, instead of assigning u to any available colour, assign u to thesmallest possible colour. Then, when Algorithm 4 terminates colour class 1 will be a maximalindependent set of G. Clearly, each colour class computed by Algorithm 4 is an independentset. Maximality follows since if �(u) 6= 1 then u has at least one neighbour with colour 1.6

Algorithm 2 Match1. Compute a forest decomposition F1; : : : ; F� of G.Direct all edges from lower ID node to higher ID node;2. Compute a 3-vertex colouring of each Fi, in parallel.Let ci be the colouring of Fi;3. M := ;;4. for i := 1 to � do5. for c := 1 to 3 do6. Every u such that ci(u) = c selects arbitrarily one of its outgoing edges;let Mc be the set of edges so selected;7. M :=M[Mc;8. Remove all vertices of Mc from the graph.matchings, but this would take
(�2+log� n) many rounds. We shall then proceed as follows.Let Fi be a forest of a forest decomposition of G and assume that it is 3-coloured already.Let c : V (Fi) ! f1; 2; 3g be the 3-colouring. Consider the following partition of E(Fi), theedge set of Fi, into three sets Eci , c = 1; 2; 3, whereEci := fuv : u is the tail and c(u) = cg:Observation 3.2 Each set Eci is made of node-disjoint stars whose centers are the nodes ofFi of colour c.Note that the sets Eci partition E. Therefore, Algorithm 3, whose correctness will be arguedshortly, computes a (2�� 1)-edge colouring.Algorithm 3 Edge Color1. Compute a forest decomposition F1; : : : ; F� of the input graph G and a3-vertex colouring ci for each Fi;2. for i = 1; : : : ;� do:3. for ci = 1; 2; 3 do:4. The centers of the stars of Eci assign di�erent colours from the interval[1; : : : ; 2� � 1] to the edges in their respective stars, paying attentionnot to create con
icts with previously coloured edges.To convince ourselves that Step 4 of the above algorithm can always be carried out, recallthat each edge is adjacent to at most 2� � 2 other edges, and that we are using 2� � 1colours. Observation 3.2 implies, for given i and c, that the colouring operations of the starsare always mutually compatible. Therefore the algorithm computes a (2��1)-edge colouring.The complexity is clearly as stated.Theorem 3.2 Algorithm 3 computes a (2� � 1)-edge colouring of the input graph G inO(� + log� n) many communication rounds. 5

own ID, knows its father, and the root knows to be the root. The hidden constant here isvery small. The algorithm was devised for the PRAM model but it is easily veri�ed to be abona�de distributed algorithm in our sense. The arborescences of Claim 2.1 satisfy the aboveproviso and therefore the procedure of Goldberg et al. can be applied to them.We start by showing how to compute a maximal matching in a directed tree T withinO(log� n) rounds. Let T be a rooted arborescence whose nodes are partitioned into threedisjoint independent sets C1; C2; C3. If one just chooses a single outgoing edge for every nodein C1, then the edges so selected are independent. Let M1 be this matching and repeat theoperation, now with C2, in the \left over" subtree obtained by removing all nodes in M1.This will return a matching M2 which can be added to M1, and, repeating with C3, a lastmatching M3 is obtained. Let us now show that the resulting edge set M := M1 [M2 [M3is a maximal matching. First notice that when Mi is computed, the edges selected by thevertices of colour i do not share endpoints currently in the tree since only outgoing edgesare selected. Second, these edges cannot share endpoints with edges included in a previousMj , j < i, because all vertices matched by Mj were removed from the tree. Therefore,M := M1 [M2 [M3 is a matching. To see that M is maximal, suppose by contradictionthat an edge uv could be added to M . Suppose moreover without loss of generality that uis the father of v and that C(u) = i 6= j = C(v). Let us consider the time when colour i isprocessed, i.e., when Mi is computed. There are two cases. The �rst is that the edge uv isnot present in the tree at that moment. This implies that either u or v has been previouslymatched, a contradiction. The other case is that u is present. But then the set of edgesoutgoing from u is nonempty, which implies that u will be matched. Again, a contradiction.Therefore M is maximal.Since the trees comprising each forest are vertex disjoint, a maximal matching in a forestcan be computed by simultaneously computing maximal matchings in each tree of the forest,and by adding these matchings together. We have established the following.Fact 3.1 Let F be a forest of the forest decomposition of G. If F is 3-vertex coloured then,a maximal matching of F can be computed within 3 communication rounds.Therefore, denoting by F1; : : : ; F� a forest decomposition of G, and assuming that eachforest is already 3-vertex coloured, a maximal matching M1 [M2 [: : : [M� is obtainedas follows. First, compute a maximal matching M1 in F1, delete the vertices of M1 fromG, thereby obtaining a \left-over" graph G0 together with a \left-over" forest decompositionF 02; : : : ; F 0�. Then, compute M2 in F 02, remove all nodes in M2, and so on, for a total of �such phases. The algorithm is spelled out as Algorithm 2.Clearly, this procedure computes a maximal matching. As noted, computing a 3-vertexcolouring of the forests takes O(log� n) many rounds, since this can be done simultaneouslyfor all Fi. Building the matching incrementally takes � phases, each of which necessitatesO(1) many rounds.Theorem 3.1 A maximal matching of G can be computed within O(log� n+�) rounds.Let us now switch to the problem of computing an edge colouring of G with 2��1 colourswithinO(log� n+�) rounds. One possibility would be to compute in sequence 2��1 maximal4

2 Generating a Forest Decomposition in Constant TimeOur algorithms are based on a simple procedure which partitions the edge set of the inputnetwork in constant time. The decomposition is generated as follows:� Let du be the degree of vertex u. Each vertex u, in parallel, ranks the edges incidentupon itself arbitrarily. By ranking we mean that each edge incident upon u receivesa distinct number between 1 and du. We call this number u's proposal for that edge.Therefore every edge gets two proposals, one for each endpoint.� The colour of edge uv is de�ned to be the proposal of the endpoint with highest ID.This procedure partitions the edge set into at most � classes. We now show that each class isa forest of rooted arborescences. Recall that a rooted arborescence is a rooted, directed tree.Claim 2.1 For i = 1; : : : ;� let Ei be the set of edges with colour i. Then Fi := (V;Ei) isa forest of G, for i = 1; : : : ;�. Furthermore, if every edge is oriented from the endnode ofsmaller ID to the one of higher ID, then all such forests consist of outward rooted arbores-cences.Proof: First we observe that no two edges of the same colour can be oriented towards a samenode, say v. Assume to the contrary that u1v and u2v are two such edges. But v assignsdi�erent proposals to the edges incident to itself, a contradiction.To conclude the proof we must exclude the existence of directed cycles inside any Fi.Now, since every edge is oriented from the endnode of smaller ID to the one of higher ID,we can exclude the existence of directed cycles altogether, since the orientation is induced bya total order of the nodes. 2De�nition 2.2 We shall refer to the forest so computed as a forest decomposition of G.The algorithm works with an arbitrary proposal scheme that orders the edges incident toa vertex. In particular, the following Algorithm 1 can be adopted:Algorithm 1 Rooted Trees1. Each vertex sends its ID number to all of its neighbors;2. The edges incident upon each vertex are ordered by decreasing ID value ofthe other endnode; the rank so obtained is the proposal made by the vertex;3. Each edge selects the proposal coming from the endnode of higher ID.3 Matchings and Edge ColouringsIn [5], Goldberg et al. give a distributed algorithm to colour the nodes of a rooted arborescenceT with three colours C1; C2; C3 within O(log� n) rounds, provided that each vertex has its3

makes the model orthogonal to the PRAM where communication is completely free and onlycomputation is charged for. As stated, computation is free in our model but if needed it canbe easily taken into account{ just charge for it! We remark that the algorithms described inthis paper perform very simple local steps and therefore their cost, including computation,is the same order of magnitude as the stated communication cost. Our results are as follows.The input to the algorithms is a (distributed) network of maximum degree � and n vertices.� We give an O(� + log� n) algorithm for computing maximal matchings;� We give an O(� + log� n) algorithm for computing (2�� 1)-edge colourings;� We give an O(�2 + log� n) algorithm for computing (� + 1)-vertex colourings;� We give an O(�2 + log� n) algorithm for computing maximal independent sets.We remark that the hidden constants here are really small. This makes our algorithms\local" in the following sense: if we keep � �xed and let n, the number of vertices, grow, thecomplexity remains essentially constant.Comparison with previous work. While maximal matchings can be computed in poly-logarithmic, in n, time in the distributed model [8], it is a decade old open problem whetherthe same running time is achievable for the remaining 3 structures [1, 8, 9, 10]. The maxi-mal matching algorithm in [8] takes O(log4 n) rounds and therefore this result appears to beat the moment only of theoretical interest. For bounded degree graphs the situation lookssomewhat better. In particular, Goldberg and Plotkin [5] give algorithms for the problemswe consider whose complexity is O(log� n). At �rst glance this looks better than the com-plexity of our algorithms, but there is a catch. There is a hidden additive constant whichis at least �� where � is the maximum degree of the network. Therefore our algorithmscompare favourably with those in [5].In a short but interesting paper, Linial [9] showed that
(log� n) many communicationrounds is a lower bound for computing the graph structures considered in this paper on aring topology. This result does not imply the same bound for all constant degree graphs.Intuitively, low degrees \decrease" the capability of the network to disperse informationquickly. The result however does easily generalize to constant degree graphs (say, �-regulargraphs, for � constant) for maximal independent sets and (� + 1)-vertex colouring (justreplace every edge of the ring with a �-clique). It does not seem to generalize so easily tomaximal matchings and (2� � 1)-edge colourings and we leave this as an open problem. Inthe same paper, Linial also showed that within O(log� n) many communication rounds it ispossible to compute vertex colourings using O(�2) many colours.In [1], a very simple, deterministic vertex colouring algorithm is given whose complexityis O(� log n) many rounds. The algorithm uses � + 1 many colours (and can be used toedge colour the network with 2� � 1 colours). With a straightforward modi�cation thealgorithm also computes maximal independent sets (and maximal matchings). Therefore, asfar as maximal independent sets and vertex colourings are concerned, this algorithm is stillasymptotically better than our algorithms for values of � larger than log n. The simplicityof the algorithm in [1] is comparable to that of our algorithms.2

Some Simple Distributed Algorithms for Sparse NetworksAlessandro PanconesiDSIUniversit�a La Sapienza di Roma Romeo RizziBRICSUniversity of �ArhusOctober 26, 2000AbstractWe give simple, deterministic, distributed algorithms for computing maximal match-ings, maximal independent sets and colourings. We show that edge colourings with atmost 2� � 1 colours, and maximal matchings can be computed within O(log� n + �)deterministic rounds, where � is the maximum degree of the network. We also show howto �nd maximal independent sets and (� + 1)-vertex colourings within O(log� n +�2)deterministic rounds. All hidden constants are very small and the algorithms are verysimple.Key words: distributed computing, sparse networks, maximal independent set, maximalmatching, vertex colouring, edge colouring.1 IntroductionIn this paper, we give fast and simple, deterministic distributed algorithms for computingseveral graph structures{ maximal matchings, maximal independent sets, and vertex{ andedge{colourings. The algorithms are very simple and are very fast when the maximum degreeof the network is small. In a distributed context, computing these structures quickly can beuseful to schedule operations, especially i/o transfers (see [2, 3, 4]). The model we consideris the synchronous, message-passing network. Here, a graph G models a distributed networkor architecture, as follows. Every vertex of G corresponds to a processor and every edge to abidirectional communication link. It is also assumed that every processor has its own uniqueID and that this is an integer between 1 and n, the number of vertices of G. This is withoutloss of generality because IDs are used only in comparisons with other IDs.Computation proceeds in a sequence of rounds, where in each round every processorreceives messages from the neighbours, it does some amount of local computation, and sendsmessages to the neighbours. The complexity of a distributed algorithm, or protocol, is, byde�nition, the number of rounds needed by the algorithm to compute. Since typically sendingmessages is orders of magnitude more costly than performing a \reasonable" amount of localcomputation, this model gives a rough, but reasonably good, approximation of the costincurred by distributed protocols. Notice that in particular the cost of sending a messagebetween two nodes must be at least proportional to their distance in the network. This1

